2014年考研数学二真题与解析

2022-01-04 10:50发布

2014年考研数学二真题与解析

2014年考研数学二真题与解析

1条回答
Paula
2022-01-04 19:55 .采纳回答

2014年考研数学二真题与解析 去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者2014年考研数学二真题与解析1.当时,若,均是比高阶的无穷小,则的可能取值范围是()(A)(B)(C)(D)【详解】,是阶无穷小,是阶无穷小,由题意可知所以的可能取值范围是,应该选(B).2.下列曲线有渐近线的是(A)(B)(C)(D)【详解】对于,可知且,所以有斜渐近线应该选(C)3.设函数具有二阶导数,,则在上()(A)当时,(B)当时,(C)当时,(D)当时,【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间上凹凸的定义比较熟悉的话,可以直接做出判断.显然就是联接两点的直线方程.故当时,曲线是凹的,也就是,应该选(D)【详解2】如果对曲线在区间上凹凸的定义不熟悉的话,可令,则,且,故当时,曲线是凹的,从而,即,也就是,应该选(D)4.曲线上对应于的点处的曲率半径是()(A)(B)
(C) (D)【详解】曲线在点处的曲率公式,曲率半径.本题中,所以,,对应于的点处,所以,曲率半径.应该选(C)5.设函数,若,则()(A)
 (B)

(C)

(D) 【详解】注意(1),(2).由于.所以可知,,.6.设在平面有界闭区域D上连续,在所以应该选(

一周热门 更多>

相关问答